Welcome back

Corona meant a serious delay for Wetropolis project. Mostly because we, several different partners, could not work as efficiently together as we wished. This delayed the project, made cooperation harder. Maybe you recognise this from your own work.

But that seems to be over now, and even though it was a lot of waiting, holding back, many things happened still in the project.

First of all, we developed cases in Zwolle (NL) and Enschede (NL), more of which will follow soon. They concern adaptation to changing climate. Saxion, Design Cube 3D and Design Lab develop this part.

Even though we could not test it during Corona, due to limited acces to schools, the landscape / river model has been worked out more into a practical setting that can be used on schools. This is PreU and Wowlab work

Especially water and underground water insight and evaluation of problems have been adressed. This will be followed by visualisations for water management in Enschede.T he combination with geographical software and tagging locations has also been worked out more thoroughly. This involved exploring GIS software and making 3D fysical models of Enschede and Zwolle. This is mainly done by Wowlab

Working with sensors developed only late in the project, but we can probably start using the sensors (climate data to begin with) this summer. ITC and KITT take a leading role here.

The report / study in which methods suitable for adressing the typical wetropolis-like water problems has been finished. The results are used in the development of workshops in Zwolle and Enschede which will take place in April and May 2022. The report was written by Design Lab.

We intend to work out using sensors in a citizen science like approach, inspired by ” Meet je stad Amersfoort” , but this still is in a start up phase. (Wowlab, Kitt)

ijssel model wet test

ijssel model wet test
wet test of the ijssel

Run the river wild.

Wet test of 1 to 30000 model of the IJssel, with exaggerated width of river to avoid hydraulical problems due to the small size. It looks nice, has a usefull size of 2.5 m x 1 m, which is very suitable. The audience of the demo can gather around it and it has a proper size for eventual hands-on work.

It takes 30 seconds for the water to flow from the inlet (IJsselkop Westervoort) to the lowest point (Keteldiep), which in reality takes about 1 day. So time scale is about 1 to 3000, or one model day = 30 seconds. The XY (horizontal) scale 1 to 30000 and Z (vertical) scale is 1 to 250. Width of channel 5 cm (downstream) and 3 cm (upstream) , depth 1.5 (up) cm and 1.1 (down) cm. These makes the model usable for demo purposes. It does not work to0 fast or too slow, size is all right, and it offers a nice overview.

Calculated the Manning number M from measured discharge , inclination and dimensions of the channel, M = 40. This can be used in the formula to calculate a better downstream width. Only a slight adaptation of the width downstream is necessary: it must be 4 cm, then depth over the whole river will be identical (1.5 cm). Numbers, numbers, numbers, all necessary to get it right.

fast construction of foam model

Making a well defined channel, with the appropriate inclination is done with the CNC router. But, even though very accurate, this requires time, a digital 3D model and an expensive CNC router. We found a cheaper and quicker way to get almost the same result. Cutting the channels with a hot wire foam cutter already appeared to be very useful, but it was a problem to construct an equal gradient over the whole channel when the channel is curved. An easy solution is making a cut (or several cuts) in the foam sheet. After cutting the channels at the same depth at every place, put the sheet on blocks with the appropriate height and push it down with a weight. It is flexible enough to follow the proper shape without breaking or bending on the wrong place and the cuts make sure the bending of the sheet follows the channel.

Rivier van licht

maquette zwolle met satelliet projectie
maquette zwolle met projectie waterlopen
twee modellen: 1 realistisch, 1 waarin dijken zijn vergroot en details zijn geelimineerd

Voor de Zwolle sessie van PruU twee maquettes gemaakt om naast elkaar te kunnen vergelijken. Allebei de modellen hebben goede kanten. Welke dat precies zijn en wanneer je het ene nodig hebt en wanneer het andere is onderwerp voor de vervolgstappen.

Met behulp van Gis hoogte informatiec (ahn.nl) kan in korte tijd een maquette worden gemaakt. Allerlei variaties zijn mogelijk: realistisch, of details als dijken naar voren halen. Met de laser worden gelaagde modellen uitgesneden, daarna worden de lagen op elkaar gemonteerd en kan er informatie zoals een hoogtekaart of een satellietfoto op worden geprojecteerd

Practicing contour making of topography

Sliced landscape, area around Enschede. Vertical slices, z scale multiplied to show elevation differences more clearly. Used material: 3mm single flute cardboard. Test to find out how it looks. Cutting took about 20 minutes and the area and it’s features can be recognized very well.

Next will include hydraulic characteristics (Kh) of the subsoil, which has a lot of variety (clay, sand loam) in this area (glacial artefacts) and a model of the IJssel and adjacent waters around Zwolle will be made for students of a school in Zwolle.

Source files: AHN (Algemene hoogtekaart Nederland; digital information of the Dutch topography). Downloaded geotiff (32 bit) from AHN site converted with QGIS to 16 bit bitmap (black and white scale). Result converted this to a smaller bitmap (GIF, about 1000 x 2000 pixel), more convenient to make a 3D shape with bitmap to heightfield in Rhino with good enough resolution for test. The resulting mesh was sliced (contour) and curves were simplified to the same resolution as the thickness of the cardboard (3mm).

Still rather complicated, more automatisation is desired to speed up the process. Problems are: huge files to download and process, cumbersome combining of different area’s. A good solution would ( quick , easy to work with, small amounts of data) be to extract a screendump fro the AHN site, if it would be possible ( as on Belgian site) to define own color range and elevationdivision

Geotiff converted to smaller ( usable) bitmap for generating heightfield. Only top 2/3th of the picture was used to avoid the obviously erroneous jump in grey values. Black values (no data) were filled with surrounding area values (Photoshop cloning after selecting black areas = no data area) to avoid deep holes in the landscape. The dark slightly curved line in the middle is the train track between Enschede and Gronau. Near the top (North) the A1 is very well visible (highway near Oldenzaal, towards de Lutte in the northeast, top right) More to the South you see the track of the A35 to Gronau

landscape cutting with cardboard

Trying out how a sliced landscape looks with different materials. Used 3mm single fluted cardboard. This should be cut perpendicular to wave direction in cardboard to avoid strange artifacts. It feels like a puzzle, maybe it could be used as such in a class geography. Next will be visualisation of the subsoil, which has a lot of variety (clay, sand loam) in this area (glacial artefacts)

Source files: AHN (algemene hoogtekaart nederland, digital information of the Dutch topography). Downloaded the information (geotiff) from AHN site, converted with QGIS to 16 bit bitmap (black and white scale), combined them in photoshop and converted this to a smaller bitmap (GIF, about 1000 x 2000 pixel) to make a 3D shape (bitmap to heightfield in Rhino, other programs are also suitable)

Geotiff converted to smaller ( usable) bitmap for generating heightfield. Only top 2/3th of the picture was used to avoid the obviously erroneous jump in grey values. Black values (no data) were equalized with surrounding area to avoid deep holes in the landscape. The dark slightly curved line in the middle is the train track between Enschede and Gronau. Near the top (North) the A1 is very well visible (highway near Oldenzaal, towards de Lutte in the northeast, top right) More to the South you see the track of the A35 to Gronau
AHN elevation map (raw data, trees as well as buildings are also mapped).

Bodemprofiel

Een buitenkansje, vlak bij Roombeek wordt een nieuwe vijver gegraven, ongeveer 4 m diep. De vijver ligt in leemgrond en is nog niet volgelopen. Daardoor is heel mooi de bodem te bekijken.

de vijver welke aan wordt gelegd vlak naast het fietspad naar Lonneker. Het eerste niveau, droog, is 2.5 m diep, het diepste deel is 4 m diep en is al gevuld

In deze buurt treedt wateroverlast op, maar het is lokaal heel verschillend. Je kunt er letterlijk moeilijk peil op trekken. Een en ander komt door de lagen klei / keileem en het zand van de stuwwal en er is veel variatie in de ondergrond. Toch zit er wel een beetje systeem in. Op de bodemkaart en de profielen kun je dat terug proberen te vinden. De foto’s laten mooi zien hoe die grenzen er in het echt uitzien: soms goed aan te wijzen, soms niet. Het zijn niet de duidelijke grenzen als in de profielen. Een beekje hier, een duintje daar toen het werd afgezet of opgestuwd maakt het alweer anders. Het maakt het tot een ware puzzel.

Onder de klei zit zand, daar stroomt wat water uit. De grond daar is ook vochtiger en donker gekleurd. Water niveau op -2.5 m tov maaiveld. De kleilaag lijkt hier vrij dun. Dat lijkt te kloppen met de bodemprofielen?
Klei – zand , flink geroerd. Grensvlak of doorgekneed materiaal in het gestuwde deel? Het lijkt op het eerste, gezien de profielen (hieronder). Het zou zelfs een vorstverschijnsel kunnen zijn? Om het nog ingewikkelder te maken.
Bodem profiel, bij de rode pijl de vijver. Deze ligt op de overgang van opgestuwde bodem (grijs) en klei (bruine laag links). Helemaal links (zwarte lijn) de grondboring in Mekkelholt. Links ligt Mekkelholt, rechts Lonneker. De gele laag is zanderig, een dunne laag vanaf het maaiveld tot de keileem. Het gestuwde laag is een mengsel van verschillende soorten grond: zand en klei door elkaar.
bron: https://www.dinoloket.nl/ondergrondmodellen

Kwelgebieden: boven de klei (links) kwelt water op (lichtbruine vlek), rechts zakt het water in de zandige grond van de hogere stuwwal (groene vlekken). Dit zag je mooi het bodemprofiel bron: https://geo.overijssel.nl/viewer/app/master/v1
Grondboringen lokatie Mekkelholt. Eerst een beetje zand, dan een laag klei (keileem) en op grotere diepte weer zand. bron: https://www.dinoloket.nl/ondergrondmodellen
Een mooi zwerfsteentje uit de vijver als souvenir. Graniet met granaatkristallen? Meegevoerd door het ijs wat de stuwwal vormde.

waterfietstocht

Waterfietstocht

The Sarndbox proved to be popular and it works. The Lego models come out well in photo’s.

For now: volcano’s filled with water, meandering rivers and an island in a blue sea are possible. Next step is making good use of it for education and outreach . We have a good start.

Lego rapids
Lego backwaters

Wetropolis en Waterfietstocht

Wetropolis is deel van de route van de Water Fietstocht van de gemeente Enschede en 1Twente. Donderdag 30 mei, op hemelvaartsdag, is Wowlab open met de Lego maquettes, de zandbak gemaakt door 100Fat staat in het atelier ernaast.

Locatie: Stroinksbleekweg 2 en 4 of via het pleintje voor museumcafe bij Rozendaal, Rozendaal 1 Enschede

Tijd: tussen 10 en 15 uur

Je vindt ons onder deze vlag, Stroinksbleekweg, naast het cafe “bij Rozendaal”
Het galton board van Lego bepaalt hoeveel water er in de lego maquette stroomt (in ontwikkeling, kijken of het al werkt)
lego landschap, wat aangepast kan worden. Of maak zelf een beekje of rivier